
ILab-Parameter Study Tool and IPG Portal
M a L! ri ce Ya-row

The lLab tool 15 as rpecificallj written to s0h.e
the complex and difficult problems of creating
and launching parameter studies. Though
today's distributed computational resources are
quite capable of running large parameter
studies for aerospace problems, users have not
had tools available to them that make this
proces5 easy and fast. L a b was developed
\\ ith a host of user-friendly features. so that
creating and launching parameter studies can
no\+ be accomplished simply and in just
minutes.

\.\.?thin the last 1 ear, the ILab tool was gi\ en an
intuitive mer interface. Users can now specif)
their processes via an advanced computer-
aided design (CAD) approach b? ~isually
constructing a flowchart-like graphic. ILab's
code generator subsequently translates this into
appropriate shell scripts, which are then
launched onto remote systems and monitored.

Researchers whose parameter 5 -idie\ conriG
individual jobs with long-running computa-

of

tional fluid dynamics problems can now take
advantage of ILab's unique "restart" capability.
This allows users to automatically se, nment
their jobs onto supercomputer scheduling
systems and to modify solver parameters for
the purpose of steering the computation to a
stable solution. Load balancing of jobs is
automatically accomplished by restarting the
jobs onto supercomputer systems with immedi-
ate processing availability. In addition. an
advanced Heip system has been built into
ILab. which users can access from any ILab
screen.

Pictured (fig. 1) is the special-purpose parame-
terization screen (bottom left) which automates
the construction of input files for multi-
dimension parametric studies. The monitoring
screen (upper left) shows the progress of

of lift

-3 1.4

Mach 1.5 Alpha

Fig. I . The flab Parameter Study Tool and results for the X-38 crew return vehicle.

@ A D V A N C E S P A C E T R A N S P O R T A T I O N

erospaceTechnoloav F n t r r i A

individual jobs in a parameter study experi-
ment. The NASA X-38 Crew Return Vehicle
(upper right) was the subject of a two-
dimensional parameter study in Mach number

number and 12 values of angle of attack.
Pictured (bottom right) is the surface of
coefficients of lift-over-drag for the X-38 at
these 192 parameter combinations.

Point of Contact: Maurice Yarrow
(650) 604-5708
yarrow@ as. n asa.gov

and angle of attack. ILab generated and
submitted 192 separate flow-field computa-
tions for the requested 16 values of Mach

Multithreading for Dynamic Unstructured Grid Applications
Rupak Biswas

The success of parallel computing in solving
realistic computational applications relies on
their efficient mapping and execution on large-
scale multiprocessor architectures. When the
algorithms and data structures corresponding to
these problems are unstructured or dynamic in
nature, efficient implementation on parallel
machines offers considerable challenges.
Unstructured applications are characterized by
irregular data-access patterns whereas dynamic
mesh adaptation causes computational work-
loads to grow or shrink at run time. For such
applications, dynamic load balancing is
required in order to achieve algorithmic scaling
on parallel machines. Our objectives were to
implement various parallel versions of a
dynamic unstructured algorithm and to criti-
cally compare their performances in terms of
run time, scalability, programmability, porta-
bility, and memory overhead.

A multithreaded version of a dynamic unstruc-
tured mesh-adaptation algorithm has been
implemented on the Cray (formerly Tera)
Multithreaded Architecture (MTA). Multi-
threaded machines can tolerate memory latency
and utilize substantially more of their comput-
ing power by processing several threads of
computation. For example, the MTA proces-
sors each have hardware support for up to 128
threads, and are therefore especially well suited

traditional parallel machines, the MTA has a
large uniform shared memory, no data cache,
and is insensitive to data placement. Parallel
programmability is significantly simplified
since users have a global view of the memory,
and need not be concerned with partitioning
and load-balancing issues. Performance was
compared with an MPI implementation on the
T3E and the Origin2000, and a shared-memory
directives-based implementation on the
Origin2000.

A standard computational mesh simulating
flow over an airfoil was used for our experi-
ments to compare the three parallel architec-
tures. The initial mesh, consisting of more
than 28,000 triangles, was refined a total of
five times to generate a mesh 45 times larger,
as shown in figure 1. Performance by platform
and programming paradigm is presented in
figure 2. It is important to note that different
parallel versions use different dynamic load-
balancing strategies. The multithreaded
implementation of the adaptation algorithm
required adding a trivial amount of code to the
original serial version and had little memory
overhead. In contrast, the MPI version doubled
the size of the code and required significant
additional memory for the communication
buffers. The simulation on the eight-processor
MTA at San Diego Supercomputing Center

for irregular and dynamic applications. Unlike using 100 threads per processor was almost ten

